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Abstract

Simulation of manufacturing processes also called virtual manufacturing plays a key role for the optimisation of productivity.
Among all the manufacturing processes, machining operations are often unavoidable because most of the mechanical
parts need to be machined during their production cycle, at least for finishing operations. The development of machining
simulation is still challenging due to large strains, strain rates and temperatures needing complex material flow stress laws
for example. In order to model industrially relevant situations, macroscopic approaches are often used to keep a reasonable
simulation time. The simulation of milling operations at a macroscopic level combines a mechanistic model of the cutting
forces, a numerical model of the dynamic response of the machine tool and a geometric model predicting the shape of the
machined part. A numerical integration procedure is used to obtain the time history of the forces and the vibrations occurring
during machining. This paper presents two different approaches for the consideration of the cutting force into the integration
procedure and discusses the time step selection used to perform this numerical integration. By taking the evolution of the
cutting force into account through a single integration step, it is possible to increase the time step. For a given precision, it
is possible to reduce the computation time by a factor up to ten using this approach.

Keywords Machining simulation - Numerical integration - Chatter vibrations

1 Introduction shapes, their low rigidity or the use of materials with low
machinability. Great benefits can be obtained from nume-

The simulation of machining processes is an unavoidable  rical expertise.

technique for optimisation of productivity. The reduction The first model of machining operation has been pro-
of setup time allowed by these techniques is essential ~ Posed by Tlusty [1] in the sixties. It was based on
to maintain competitiveness of industrial manufacturers.  linearisation of the turning process in order to model the
In addition, some high added value sectors need the regenerative effect leading to chatter vibration. The stability

production of parts difficult to machine due to their complex ~ 1obe diagram, locating the combination of depth of cut
and spindle speed producing stable operation, is the main

outcome of this approach. It was later extended to milling
operations by several authors [2—4].

Stability analysis of the delay differential equation
governing the machining simulation has been another
proficient research topic. This approach improves the
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hoainam.huynh@umons.ac.be simulation for small immersion operations where a second
Olivier Verlinden type of instability linked to flip bifurcation can be observed
olivier.verlinden @umons.ac.be [5-9]. These simulation methods are able to model simple
geometrical configurations with a relatively low computing
I Machine Design and Production Engineering, University time. In addition, these methods are often well suited to
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more and more accessible [10]. Models based on finite ele-
ment method [11], Arbitrary Lagrangian/Eulerian method
[12], meshless methods [13] among others have been stud-
ied. However, the complete simulation of machining oper-
ations by numerical models based on finite element is
nowadays so complex that only academic examples such as
2D plane strain approach can be simulated with a reasonable
computing time [14].

In order to model industrial applications, a good
compromise is to use a macroscopic approach to model the
interaction between the cutting tool and the workpiece [15,
16]. The actual geometry of the tool and the precise toolpath
can be studied with reasonable simulation time taking
several non-linearities into account. Stability analysis [16—
18], prediction of cutting forces with complex tool geometry
[19, 20] or development of stabilisation techniques [21, 22]
can be achieved by this approach although they require
higher CPU time than the methods based on the analysis
of the delay differential equations previously presented. A
dynamic model is implemented as part of the simulations
presented in this paper.

Extension of macroscopic models have been recently
developed to be able to deal with complex geometry of
the part (pocket milling [23], thin walled structure [24,
25] e.g.). Further developments were carried out to use
more precise model of cutting forces [26, 27] and to take
the uncertainty of the process into account [28]. Parasite
effects such as the deflection of the cutting tool [29] can
be reduced. This allows the generalisation of the simulation
to micro milling operations [30]. Finally, a complete virtual
model of machine tool can be developed prior to its physical
prototyping [31] opening the way to full virtual prototyping
of the machining operations.

The information about the exact integration procedure
is sometimes difficult to obtain from the literature. Some
authors do not specify the integration method nor the use
of iteration on a single time step (see [18] or [32] for
example). Several authors use different integration schemes
to simulate milling operation such as fourth order Runge-
Kutta [33, 34], Euler’s method [35] or Newmark’s method
[17]. In most papers, few comments are made on the choice
of the integration time step. Ming et al. [32] proposed a
criterion based on the highest frequency of the simulated
structure, Peigne et al. [17] added a geometrical criterion
ensuring that there are enough time steps to model precisely
the interaction between the tool and the workpiece for any
given tool revolution.

This paper aims to study two different integration
approaches for the simulation of milling operations in order
to determine guidelines for the selection of the integration
time step. Two examples using several cutting conditions
are presented leading to simulations of stable and unstable
machining operations.
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2 Description of the numerical model

Dynamic simulation of milling operation is based on the
coupling of three main models: the model of the surface,
computing the amount of material removed by the cutting
tool and predicting the surface finish; the model of the
cutting forces, modelling the interaction between the tool
and the workpiece; and the dynamic model of the system,
predicting the vibrations occurring in the tool and the
workpiece due to the cutting forces. Those models are
combined in a single environment to simulate the machining
process.

2.1 Surface modelling

Chatter vibration is a regenerative process produced by
the fact that the cutting edges remove material from a
previously machined surface [1]. Hence, the surface model
must be accurate enough to take this effect into account.
The approach used in this paper is based on a 2% D
model considering that the cutting tool moves only within
a plane perpendicular to its axis. An ‘eraser of matter’
model proposed by Peigne et al. [17] is used during the
simulation. The surface is approximated by its profile in
different positions along the axis of the cutter by a list of
points (Fig. 1).

An intersection procedure is set up to compute the
undeformed chip thickness (Fig. 2). The movement of the
cutting edge between two time steps is approximated by
a second order Bézier spline linking the position of the
cutting edge at the current time step and its two previous
positions. This procedure needs to be repeated on every
segment defining the surface till an actual intersection is
found. It is a time-consuming part in the whole process. It
might be interesting to use it as sparsely as possible.

During the simulation of machining, the area of material
swept during a given time step must be removed from the
workpiece. The amount of data needed to save the geometry
of the surface at each time step is so high that only its current
state is saved during the simulation. It means that when a
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Fig.1 Machined surface and its decomposition in profiles
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Fig.2 Algorithm used to model the machined surface (inspired from [17])

computation step is performed, it is impossible to come back
to a previous state. However, during any given time step, the
integration procedure can be iterated in order to converge
before continuing the integration procedure.

2.2 Cutting force modelling

Macroscopic modelling of cutting forces in machining
issues from so-called mechanistic models. These models
allow the prediction of the cutting forces for a given
tool/material couple using simple analytical laws. Complex
cutter shapes are divided into several slices along their
revolution axis in order to approximate the geometric data
[19]. The most common model proposed by Kienzle [36]
computes the cutting forces on a local frame (¢ along the
cutting speed, r along the local normal to the tool and a
along the third direction leading to an orthogonal frame with
t and r) as functions of the undeformed chip thickness z and
the height of a slice da as

dF; = K; -h" - da (1

with i = {r, ¢, a} and n an exponent smaller than or equal to
one.

Altintas and Lee [37] proposed another popular model
by adding the effect of friction along the local length of the
cutting edge d S as

dF; =K;c-h-da+K;,-dS @)

The local contributions are projected on a common
reference frame using the rotation angle of the cutting edge
¢ and the orientation of the local normal to the cutter «
(Fig. 3):

dF, —Ccos¢p —sing -sink —sing - cosk

dF, ; = singg —cos¢ -sink —cos¢ - cosk

dF, 0 — COS K —sink
dF;
dF;, (3
dF,

All these contributions are then summed up along the
cutting edges to obtain the resultant cutting force (Fy, Fy
and F7) in the reference frame.

2.3 Dynamic behaviour of the machine

The dynamic behaviour of the machine tool can be modelled
by several techniques such as the modal identification of
the frequency response function at the tooltip by modal
analysis, physical modelling of the machine tool as a
multibody system or a finite element model of the machine
tool.

Modal model is fully experimental and can be used when
few information is available on the machine itself. It can be
used for determination of optimal cutting parameters [38]
but not for virtual CNC approach. Modal technique can be
completed using receptance coupling [39] to avoid multiple
experimental fitting for several tools.

Fig.3 Local frame for the cutting forces
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In order to enrich the possibilities of simulation,
multibody approach [40, 41] can be used to model the
machine tool. The response of the machine can be taken
into account with finer details (effect of the control loop
on stability for example); however, it needs a better
understanding of the machine manufacturing and can be
more complicated to set up.

2.4 Numerical integration

The motion of a mechanical system can be described by the
governing equation:

M(q)-d+h(ad)=g(adr) @

where q is the vector gathering the configuration parameters

of the system, ¢ and § its first and second time derivatives,

M the mass _matrix,_ h the contribution of centrifugal,

gyroscopic and Coriolis effects and g the external forces.
These equations can be rewritten as:

M@ §+H(q.61)=f(94§)=0 5)

with H (g, g, t) =h (g, g) -8 (g, g, t). The numerical
integration considers that the time is discretised in time steps
and configuration parameters and their time derivatives are
evaluated at each time step. The computation of position
and velocity from the acceleration is made from Newmark’s
integration formulas:

0" = q' +hg' + 05— By h*G + ph7G! (©)
¢ = ¢+ A —y)h§' + yhg't! 7

where 8 and y are parameters and % the time step. In order
to ensure unconditional stability for linear systems, y and B
parameters must be selected in the following range:

y >0,5 (8)
B>0,25-(y +0,5)> 9)

For this paper, value y = 0.5 and § = 0.25 have been
selected, ensuring that no numerical damping is added in the
process. The equations of motion are built in their residual
form from the kinematics and the applied forces. The
integration consists in computing the equations of motion
(5) in terms of the accelerations at time ¢ + & after having
replaced the positions g (6) and the velocities ¢ (7) by their
Newmark’s integration formulas:

A (EI’ q.q, qt-ﬁ-h) ’gt+h’ t+ h) -0 (10)

where A and A are the expression of position and speed
at the next time step as a function of the acceleration.

@ Springer

With this substitution, the only remaining unknowns are the
accelerations ¢:

E(§") =0 an

The solution of this equation is found using Newton-
Raphson method to achieve the convergence of the
acceleration q for each configuration parameter at time 7 +h
as

gl-f—h,n — gf+h,ﬂ—1 _ J—l . E(gf+h,n—1) (12)

with F @’”‘) the equation of motion and J the Jacobian

matrix of Eq. 11 with respect to the unknown accelerations.
Convergence is obtained when

Hgl‘-ﬁ‘h,n _gl‘-’rh,n—l H S € (13)

with € the tolerance. If the external force is a constant and
the dynamic system is linear, Eq. 11 can be solved in a
closed form.

3 Numerical integration procedure

While performing simulation of milling operations, time
step is generally selected based on two constraints:

— It should be small enough to accurately simulate the
high frequency response, usually a choice of one tenth
of the smallest period of the system is chosen [32].

— It should be small enough for being able to model the
machined surface accurately, a classical choice is to use
at least 30 time steps between the entry end the exit of
the tool within the workpiece [17].

When a machine tool is used, the second constraint is
often dominant, thus a rather small time step is used from
the dynamic point of view. It means that the difference of
position of the cutting edge between two successive time
steps is small. It is then usually admitted that the cutting
force remains constant over the time step, in order to speed
up the simulation by avoiding multiple computations of the
intersection between the cutter and the workpiece. If larger
time steps are used, the variation of the cutting force over
the time step has to be taken into account.

3.1 Single pass algorithm

The first proposed algorithm considers a single computation
of the intersection with the workpiece at each time step.
The cutting force is computed from the undeformed chip
thickness evaluated with the kinematic of the system only.
The additional displacement provided by the dynamic
response of the system is neglected. It is called the
‘single pass algorithm’ afterwards. The cutting force is only



Int J Adv Manuf Technol

‘ Reading data

R :

¥
Compute cutting
edge position
)

5
Gest = 0 |

‘ Compute chip thickness

{

‘ Compute cutting forces‘

I

Establish F (") = 0

yes . . T
iterative T
t+h _
Compute q**" and ¢**" ‘ ----- >l ”ﬂ Gest

— — S ’ 2

single l - <€
pass h
yes

update surface |,
t=t+h

‘ End of simulation ‘

Fig.4 Numerical integration algorithm

computed at the beginning of the time step. Figure 4 shows
(in plain lines) the principle of this method.

The assumption that cutting forces are kept constant
during each time step may be a limitation for some cases,
for example:

— If the structure is highly flexible so that high amplitude
vibration can be observed.
— If the system has an unstable behaviour.

The second point may be considered as marginal as far
as the objective of the simulation is to determine cutting
conditions that lead to a stable behaviour. However, the
accurate simulation of unstable machining operations is
an important field of study in order to develop precise
detection of vibration [42—44] and methods able to stabilise
the system [21, 45, 46].

3.2 Iterative algorithm

During the numerical integration of the equations of motion,
the first predicted position of the cutting edge is only
determined by considering the kinematics of the machine.
A corrected position can be found by taking the dynamics
of the system into account (Fig. 5). This leads to a

Single pass: F'= F™'= p™?

Tterative: F'z F™1= pm*2

Fig. 5 Successive iterated positions of the tool center during the
convergence loop

slightly different position of the cutting edges, modifying
accordingly the value of the cutting force. The cutting force
evaluated at the beginning of the time step can be updated,
leading to a new estimation of the position of the cutting
edge. The computation of a single time step thus needs to
iterate the intersection procedure until the position of the
cutting edge has converge within a given tolerance (a value
of 0.1 wm is used in this paper). Once the convergence is
achieved, the surface is updated before the computation of
the next time step. This procedure taking the variation of the
cutting force during a single time step with respect to the
cutter position is called the ‘iterative algorithm’ afterwards.

This iterative algorithm thus includes multiple calls to the
intersection procedure in the loop as shown in Fig. 4 (dashed
lines).

4 Application of the method

In order to test the influence of the integration procedure
and the impact of the time step selection, two numerical
examples were selected [3, 47]. The simulated results have
been validated by different references in the literature
[48, 49]. Several simulations were performed to assess
the general behaviour of the system over different cutting
conditions and the influence of the time step selection over
the results of the simulation.

4.1 Milling simulation with a SDOF system

The first simulated testcase is taken from [50]:

— Cutting tool: cylindrical endmill with one tooth;

@ Springer
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Fig.6 Stability lobes diagram for the testcase

—  Workpiece: 7075-T6 aluminium alloy (K; = 550 MPa,
K, =200 MPa)

— Dynamic response of the system: 1 mode along feed
direction with an eigenfrequency of 146.5 Hz, a
damping ratio of 0.32% and a modal mass of 2.573 kg;

— Cutting conditions: half immersion upmilling, feed of
0.05 mm/tooth, spindle speed ranging from 5000 to
25,000 rpm, axial depth of cut from 0.1 to 4.5 mm.

The stability of the system is described by the so-called
stability lobe diagram (SLD) that shows the division
between stable and unstable milling operations on a spindle
speed/ axial depth of cut (ADOC) chart. Two types of
instabilities can be observed: one linked to the Hopf
bifurcation which is observed for roughing and finishing
operations and one linked to the flip bifurcation which is
mainly observed for finishing operations.

Figure 6 shows the SLD for the selected testcase. For an
axial depth of cut of 2 mm, three particular spindle speeds
have been selected leading to three different behaviours:

— A stable case at a spindle speed of 22,000 rpm;

Stabl Hopf Fli

150 abe ob 150 P
Z.100 100
5]
g
£ 50 50

0 0 0

0 0 05 1

— 50
E
=
g0
g
2 .50
-

0 0.5 1 0 0.5 1 0 0.5 1
Time [s] Time [s] Time [s]

Fig. 7 Typical evolution of cutting forces and vibrations for stable
(left), Hopf unstable (center) and flip unstable (right) simulations
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— Two unstable cases:

— one linked to Hopf bifurcation at a spindle
speed of 16,000 rpm;

— one linked to flip bifurcation at a spindle speed
of 19,000 rpm.

Figure 7 shows typical evolution of the cutting forces and
vibrations amplitude for these cases. The results are similar
to those observed in the literature [51].

The aim of this section is to describe the evolution of the
results in order to deduce the general trends for the selection
of the time step. For each case, a reference simulation has
been performed with a time step ensuring the convergence
of the results.

4.1.1 Chatter-free

For a spindle speed of 22,000 rpm with an axial depth of
cut of 2 mm, the milling system is stable. The dominant
criterion to select the default time step for integration is the
geometric one. The use of 120 steps per revolution leads
to a value b9 = 2.27 - 107> s (or a sample frequency of
34 kHz). Using this time step value, it can be observed that
there is no significant difference on the results obtained by
both integration methods (Fig. 8). The simulation of 300
revolutions of the cutter is completed in less than 1 s using a
laptop with a I3-2310M CPU (2.10 GHz) and 4 Gb of RAM.

The vibration has a small amplitude with a dominant
frequency linked to the tooth passing frequency of
366.67 Hz as expected [47]. The choice of a smaller time
step does not change the results of the simulation meaning
that the default time step is sufficient for the convergence of
the results.

Single pass

2

Vibration [pum]|
IS

_6 1 1 1 1 1 1 1 1 1
0 005 01 015 02 025 03 035 04 045 05
Time [s]
Iterative
0 T T T T T T T T T
=)
22
=
.2
= 4
g
=
Sl
0 005 01 015 02 025 03 035 04 045 05

Time [s]

Fig. 8 Vibration amplitude for a stable testcase (top: single pass
algorithm, bottom: iterative algorithm)
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Fig. 9 Vibration amplitude for an unstable testcase with Hopf
bifurcation (top: single pass algorithm, bottom: iterative algorithm)

4.1.2 Hopf bifurcation

At a spindle speed of 16,000 rpm and 2 mm ADOC,
the system has an unstable behaviour linked to Hopf
bifurcation. Several simulations were performed during 300
revolutions of the cutter with both integration procedures
starting with the reference time step hg. Once more, the
most severe criterion is the geometric one for this case with
a value of 3.12 - 107> s (sample frequency of 32 kHz). For
this case, the results of the simulations using both methods
show some differences (Fig. 9). It can be noticed that the
time delay to reach an unstable state slightly differs from
one simulation to another.

Two indicators were selected to assess the quality of the
results: the dominant frequency of the displacement signal
which is the main chatter frequency and the peak to peak
(ptp) amplitude of the displacement signal as proposed by
Smith [2]. The converged values for these indicators are
0.12365 mm for ptp amplitude and 153.1 Hz for the chatter
frequency. Tables 1 and 2 show the evolution of these

Table 1 Summary of the results for Hopf bifurcation (single pass
algorithm)

ho/h ptp Sfehatter CPU time
(mm) (Hz) (s

0.5 0.1525 151.6 1
0.1395 1523 3

3 0.1299 153.1 13

10 0.1256 153.1 77

30 0.1243 153.1 207

100 0.1239 153.1 1211

300 0.1237 153.1 10,516

Table 2 Summary of the results for Hopf bifurcation (iterative
algorithm)

ho/h ptp Sfehatter CPU time
(mm) (Hz) (s)

0.5 0.1182 153.1 1.5
0.1216 153.1 4

3 0.1231 153.1 24

10 0.1235 153.1 140

30 0.1236 153.1 420

indicators linked to the CPU time for a selection of time
steps. The same laptop was used to perform the simulations.
Less time steps were tested with the iterative procedure
because the convergence of the results was already achieved
with a time step divided by 30 whereas the single pass
procedure needed a reduction of 300.

The results show that each simulation accurately predicts
the chatter frequency. The peak to peak evolution with
respect to the time step is shown in Fig. 10. The single
pass algorithm tends to overestimate this indicator while the
iterative method tends to underestimate it. Convergence of
the peak to peak amplitude is observed for both integration
methods. The evolution of CPU time with respect to the time
step is nearly quadratic. For a given choice of time step, the
single pass procedure has a smaller CPU time as expected.
It can be noticed that for the same choice of time step the
ratio of CPU time is around two between both procedures.

Figure 11 shows the evolution of the gap between the
simulated peak to peak amplitude and the converged value
with respect to the simulation time. It can be observed that
the iterative procedure gives results that are closer to the
reference for a given simulation time. For a given precision,

Peak to peak amplitude versus time step evolution
0.155 ; T .

0.15r

0.145F

0.14 1

0.135F

Ptp [mm]

0.13F

0.125F

0.12

0.115 : :
107! 10° 10° 102 103
hy/h

Fig. 10 Evolution of the peak to peak amplitude with respect to the
time step (dotted line represent the converged value)
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Peak to peak difference versus simulation time evolution
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Fig. 11 Gap between simulated peak to peak amplitude and reference
value

the iterative procedure can use a time step ten times larger
than the single pass procedure leading to similar results.
Using the reference time step, the single pass algorithm
computes a peak to peak amplitude that differs from the
converged value of more than 10%. With the same time step,
the results of the iterative differs of less than 2%. It shows
that the reference time step is a good compromise while
using the iterative algorithm.

4.1.3 Flip bifurcation

The same procedure was applied on the flip unstable case.
The spindle speed is now 19,000 rpm with 2 mm ADOC and
300 revolutions of the cutter are simulated. The reference
time step ho is now 2.63 - 107> s (sample frequency
38 kHz), still computed using the geometric criterion.
Reaching an instability linked to the flip bifurcation causes
the displacement of the tool to double its period leading to
a modulated movement [47]. Two interesting frequencies
can be tracked: the chatter frequency and a lower modulated

fchattcr

Fig. 12 Typical displacement of the tool during flip bifurcation
instability
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Fig. 13 Evolution of simulated vibration for the unstable flip case with
time steps ranging from 2 - g to hy/30

frequency (Fig. 12), the same laptop was used to perform
the simulations.

Figure 13 shows the evolution of the simulated signal for
single pass integration scheme with different time steps. It
can be observed that the modulated frequency content of the
signal tends to differ significantly.

The modulated frequency criterion was added to those
previously used in order to select the suitable time step
while comparing the two integration procedures. The
converged values are 0.350 mm for the ptp amplitude,
155.24 Hz for the chatter frequency and 6.21 Hz for the
modulated frequency. Tables 3 and 4 summarise the results.

It can be noticed that for flip bifurcation, the chatter
frequency (Fig. 14) and the peak to peak amplitude are close
to the reference values with the reference time step.

The modulated frequency (Fig. 15) has a higher relative
variation and it is necessary to use a time step three to ten
times smaller than the reference value to reach an error
smaller than 5%.

The single pass algorithm tends to overestimate this value
while the iterative algorithm underestimates it (Fig. 16).
This is usually observed for implicit numerical integration

Table 3 Results for flip bifurcation using single pass algorithm

hO/ h ptp Jehatter Jmod CPU time
(mm) (Hz) (Hz) (s)

1 0.351 154.41 7.72 0.6

3 0.350 154.92 6.73 3

10 0.350 155.14 6.46 15

30 0.350 155.21 6.21 44

100 0.350 155.21 6.21 246

300 0.350 155.24 6.21 2164
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Table 4 Results for flip bifurcation using iterative algorithm

ho/h ptp Sehatter Smod CPU time
(mm) (Hz) (Hz) (s)

0.5 0.355 158.32 5.03 0.4

1 0.351 155.86 5.65 1

3 0.350 155.39 5.97 5

10 0.350 155.29 597 30

30 0.350 155.24 6.21 90

that tends to lower the frequencies while explicit methods
tend to rise the frequencies.

4.2 Milling simulation with a MDOF system

In order to test the integration method on a more complex
dynamic system, another milling example taken from [3] is
used:

—  Cutting tool: cylindrical shell mill of 4 in. diameter with
eight teeth;

—  Workpiece: aluminium alloy (K; = 1500 MPa, K, =
450 MPa)

— Dynamic response of the system: two modes in both
feed (x) and perpendicular (y) directions, the identified
modal data of the system are summarised in Table 5. ;

— Cutting conditions: half immersion upmilling, feed of
0.1 mm/tooth, spindle speed from 1000 to 8000 rpm,
axial depth of cut from 1 to 11 mm.

The FRF of the dynamic system in both directions is
shown in Fig. 17. There is one dominant mode in each
direction. The stability lobes are given in Fig. 18. The

Chatter frequency versus time step evolution
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Fig. 14 Chatter frequency with repect to time step (dotted line is the
converged value)

Modulation frequency versus time step evolution
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Fig. 15 Modulated frequency with respect to time step (dotted line is
the converged value)

stability is mainly conditioned by the second mode in x
direction.

The selected cutting parameters are 2000 rpm spindle
speed and 5 mm ADOC. These cutting parameters lead to an
unstable operation linked to Hopf bifurcation. The reference
time step /g is now 2.5-10™* s (sample frequency of 4 kHz),
still computed using the geometric criteria. Tables 6 and 7
present the results of simulation along 50 revolutions of the
tool. The reference value for ptp amplitude is 0.118 mm
along x direction and 0.151 mm along y direction. The
dominant frequency at 397.08 Hz turns out to be the same
in both x and y directions. This frequency is linked to the
second mode along the feed direction.

Frequency versus simulation time evolution
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Fig. 16 Evolution of modulated frequency with respect to CPU time
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Table 5 Dynamic properties of the MDOF milling system

Mode f (Hz) £ k (N/m)
x 1 260 0.12 2.26E+08
2 389 0.04 5.54E+07
y 1 150 0.1 2.13E+08
2 348 0.1 2.14E+07

Figure 19 shows that with the default time step, the
single pass algorithm produces results completely different
from the converged value. For % = 0.5 and % = 1, the
displacement along x direction has a dominant frequency of
266.66 Hz corresponding to the tooth passing frequency for
the eight teeth (2000 rpm -8/60).

The analysis of the FFT for both cases (Fig. 20) confirms
that the frequency content is different for both approaches.
With the single pass algorithm, the dominant frequency
peaks are linked to the tooth passing frequency and its
harmonics, which is a typical feature of a stable system [49].
With the iterative algorithm, the main frequency is close to
one eigenfrequency of the system.

It seems that while using an inappropriate time step
with the single pass procedure, the level of vibrations is
underestimated, so a system with an unstable behaviour
remains stable from a numerical point of view. This
confirms the interest of the iterative procedure for a more
reliable simulation.

While using a time step smaller than the default one, all
simulations produce a dominant frequency with the right
order of magnitude.

The peak to peak amplitude in both directions (Fig. 21)
converges while the time step decreases. For this case, both
methods tend to underestimate the converged value. The gap
between simulated and reference peak to peak amplitude

-130 T T . ‘
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-150

0 100 200 300 400 500 600
Frequency [Hz|

Fig. 17 FRF in both directions for MDOF system

@ Springer

Axial depth of cut [mm|

1000 2000 3000 4000 5000 6000 7000 8000
Spindle speed [RPM]

Fig. 18 Stability lobes for the MDOF milling example

along x (Fig. 22) and y direction (Fig. 23) follows the same
trend as for the SDOF example. Once again, for a given
precision, the iterative procedure allows the reduction of the
CPU time by a factor of ten.

4.3 Milling simulation with a non symmetrical
dynamic system

4.3.1 High spindle speed example

The dynamic behaviour of a milling machine is often
dominated by the behaviour of the spindle. This may explain
the fact that most of the time, the FRF of the system is
nearly symmetrical for both x and y directions. However,
it can be useful to test the results of simulations for a non-
symmetrical system. For this purpose, a third testcase taken
from [52] has been selected:

—  Cutting tool: cylindrical endmill of 3.175 mm diameter
with two teeth.

—  Workpiece: aluminium alloy (Kt = 1378 MPa, Kr =
861 MPa)

Table 6 Simulation of 2 DOF system with one pass algorithm

ho/h PIpx pipy Sehatter CPU time
(mm) (mm) (Hz) (®)

0.5 0.025 0.085 266.67 0.5

1 0.034 0.081 266.67

3 0.067 0.109 387.56 2

10 0.094 0.129 394.15 9

30 0.108 0.142 395.62 54

100 0.113 0.148 396.35 133

300 0.115 0.149 397.08 365
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Table 7 Simulation of 2 DOF system with iterative algorithm

h/ ho PIDx pipy Sehatter CPU time
(mm) (mm) (Hz) (s)

0.5 0.073 0.116 266.67 1.5

1 0.093 0.128 386.82 2

3 0.106 0.138 395.61 6

10 0.115 0.149 397.08 26

30 0.116 0.151 397.08 106

— Dynamic response of the system: three modes in both
feed (x) and perpendicular (y) directions, the identified
modal data of the system are summarised in Table 8,
showing a shift of more than 200 Hz between the modes
in both directions.

— Cutting conditions: slot milling, feed of 0.1 mm/tooth,
spindle speed 30,000 rpm, axial depth of cut 60 pm.

The default time step is 3.333 - 107> s (sample frequency of
30 kHz.

The combination of axial depth of cut and spindle speed
leads to a unstable behaviour linked to Hopf bifurcation.
Tables 9 and 10 show the results of simulations along
200 revolutions of the cutter. The results are graphically
presented in Figs. 24 and 25. For this testcase, both
integration procedures tend to underestimate the chatter
frequency.

Even though this example has a dynamic system with
a non-symmetrical behaviour and has higher frequencies
modes, the main conclusions are the same as previously
stated:

— Fora given time step selected, the iterative method gives
more precise results.
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Fig. 19 Evolution of the displacement along feed direction using the
default time step
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Fig.20 FFT of the displacement along feed direction using the default
time step

— For a given CPU time, the iterative method gives more
precise results than the one pass algorithm;

— the use of the default time step with the iterative
procedure give a good compromise between reasonable
CPU time and good precision.

4.4 Stability lobes

In order to evaluate the impact on a broader range of cutting
parameters, the SLD was simulated using the dynamic
simulation method and the data of the SDOF example with
the default time step. The studied domain was discretised in
a series of points and a dynamic simulation was performed
for each point. An instability criterion has to be used to

Peak to peak amplitude versus time step evolution
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Fig. 21 Simulated peak to peak amplitude evolution with respect to
the time step
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Peak to peak difference versus simulation time evolution

Table 8 Dynamic properties of the MDOF milling system

10 ;

A Ptp [mm)]
S

1073 .
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CPU time |

Fig.22 Gap between simulated peak to peak amplitude and reference
value along x direction

separate stable and unstable simulations. Classically, the
comparison is made on the maximal undeformed chip
thickness computed during the simulations. If this value
exceeds 125% of the value observed for a stable simulation,
the system is considered unstable [18].

The SLD is plotted using the value of axial depth of
cut that separate stable and unstable simulations. Figure 26
shows the comparison of the stability lobes obtained using
both integration procedures with the default value of the
time step (120 steps per revolution).

There is no modification of the lobes linked to the flip
bifurcation and a slight effect on the lobe linked to the
Hopf bifurcation. This difference is mainly linked to the

Peak to peak difference versus simulation time evolution
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Fig. 23 Gap between simulated peak to peak amplitude and reference
value along y direction
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Mode f (Hz) & k (N/m)
1 241 0.054 491E+6
X 2 383 0.058 1.46E+7
3 2277 0.155 1.62E+5
1 56.6 0.142 1.64E+7
y 2 142 0.055 3.62E+7
3 2558 0.097 2.36E+5

previously mentioned difference on the delay to establish
unstable behaviour of the system. As far as the simulation
time is limited to a finite number of tool revolutions, it
might be possible that for borderline simulation points,
the instability criterion is not reached at the end of the
simulation for an unstable example. This may be linked to
the fact that iterative methods tend to add a bit of numerical
damping that might delay the appearance of instability. In
order to illustrate this effect, Fig. 27 shows the evolution
of the cutting forces and the vibrations for a point at
17,000 rpm spindle speed and 2.4 mm ADOC. The dashed
line shows the end of the simulation while considering 500
revolutions of the cutter. It can be seen that this leads to
a fault detection of a stable simulation for the iterative
procedure.

Figures 28, 29 and 30 show the evolution of the peak to
peak amplitude with respect to the axial depth of cut for the
three spindle speeds that were previously selected. These
results confirm the previously observed trends:

— for unstable cutting conditions linked to Hopf bifurca-
tion, there is a significant difference in ptp amplitude
according to the integration procedure;

— for unstable cutting conditions linked to flip bifurcation,
there is no significant difference on the ptp indicator;

— for stable cutting conditions, there is no significant
difference between both integration methods.

Table 9 Simulation of 3 DOF system with one pass algorithm

ho/h PIpx pipy JSehatter CPU time
(um) (um) (Hz) (s)

0.5 0.48413 0.12562 2150 04

1 0.52413 0.14671 2276 1.27

3 0.221012 0.096468 2361.8 7.81

10 0.16472 0.079221 2376.8 84

30 0.15248 0.072857 2381.9 430

100 0.15303 0.071908 2386.9 1587

300 0.15079 0.72264 2387 124,285
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Table 10 Simulation of three DOF system with iterative algorithm

ho/h DIDx pipy Sehatter CPU time
(um) (um) (Hz) (®)

0.5 0.095968 0.053383 2320.8 0.92

1 0.11872 0.065302 2371.5 2.35

3 0.14504 0.070976 2387 14.79

10 0.14623 0.071229 2386.9 153

30 0.15075 0.072281 2387 791

5 Summary

In this paper, a simulation framework for milling operation
has been presented, linking a multimode dynamic system
with a mechanistic model of machining. Two different
integration algorithms are tested neglecting or considering
the variation of the cutting force during a step of com-
putation. The iterative integration approach, taking this
variation into account, allows the use of a larger time step
while maintaining the accuracy of the results.

The quality of the results has been analysed for different
time steps over various cutting conditions. The main
conclusions are as follows:

— For stable simulation case, there is no significant effect
of the integration procedure on the result.

— For unstable simulation case linked to Hopf bifurcation,
the chatter frequency is accurately predicted by both
procedure. The reduction of the time step allows a better
prediction of the peak to peak amplitude of the unstable
vibration. For a given CPU time, the iterative procedure
is more precise than the single-pass one.

Chatter frequency versus time step evolution
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Fig.24 Simulated chatter frequency evolution with respect to the time
step
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Fig. 25 Simulated peak to peak amplitude evolution with respect to
the time step

—  For unstable simulation case linked to flip bifurcation,
the chatter frequency and the peak to peak amplitude of
vibration are accurately predicted by both procedures.
The modulated frequency linked to period doubling is
less precisely predicted and a reduction of the time step
is necessary to reach convergence of the results.

Generally speaking, although having a small effect on the
simulation time, the iterative integration procedure allows
using bigger time steps for similar accuracy of the results. It
allows the reduction of CPU time by a factor up to ten for a
given simulation of milling operation.

Several guidelines can thus be proposed for the selection
of the time step in dynamic simulation of milling operations:
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— o [\ ot w

<
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Fig. 26 Comparison of the stability lobes obtained by dynamic
simulation using single pass and iterative integration procedures with
the default time step
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Fig. 27 Evolution of the displacement along feed direction using the
default time step at 17,000 rpm spindle speed and 2.4 mm ADOC (top:
single pass algorithm, bottom: iterative algorithm)

— As far as the iterative procedure gives more precise
results than the one pass algorithm for a given time step
and for a given CPU time, it should be the preferred
integration procedure.

— The use of the default time step (at least 30 time steps
between entry and exit of the workpiece, checking that
it provides a sample frequency sufficient to model the
high frequency content of the dynamic system) gives
reliable results in terms of stability and good precision
for the peak to peak amplitude.

— Increasing the time step below the default value can lead
to faulty simulations (unstable case considered stable
for example), so it should be avoided.
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Fig. 28 Evolution of the peak to peak amplitude with respect to the
axial depth of cut at a spindle speed of 16,000 rpm (instability linked
to Hopf bifurcation)
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Fig. 29 Evolution of the peak to peak amplitude with respect to the
axial depth of cut at a spindle speed of 19,000 rpm (instability linked
to flip bifurcation)

— Reducing the time step can lead to higher precision
computation but at the cost of higher CPU time (CPU
time increases as the square of the number of time
steps).

With all those elements, the choice of the default time
step with the iterative integration procedure appears as the
best compromise as a starting point for the simulation of
a milling operation. Using the default time step with the
iterative algorithm produces accurate results while some
significant discrepancies can be observed with the single
pass algorithm. The use of the iterative algorithm with
the default time step seems to be a good compromise for
accurate simulation with a reasonable simulation time.

Speed: 22000 RPM
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Fig. 30 Evolution of the peak to peak amplitude with respect to the
axial depth of cut at a spindle speed of 22,000 rpm
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